Straight line graphs

A LEVEL LINKS

Scheme of work: 2a. Straight-line graphs, parallel/perpendicular, length and area problems

Key points

- A straight line has the equation y = mx + c, where *m* is the gradient and *c* is the *y*-intercept (where x = 0).
- The equation of a straight line can be written in the form ax + by + c = 0, where *a*, *b* and *c* are integers.
- When given the coordinates (*x*₁, *y*₁) and (*x*₂, *y*₂) of two points on a line the gradient is calculated using the

formula
$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

Example 1 A straight line has gradient $-\frac{1}{2}$ and y-intercept 3.

Write the equation of the line in the form ax + by + c = 0.

$m = -\frac{1}{2} \text{ and } c = 3$ So $y = -\frac{1}{2}x + 3$	1 A straight line has equation y = mx + c. Substitute the gradient and y-intercept given in the question
$\frac{1}{2}x + y - 3 = 0$	into this equation.2 Rearrange the equation so all the terms are on one side and 0 is on the other side.
x + 2y - 6 = 0	3 Multiply both sides by 2 to eliminate the denominator.

Example 2 Find the gradient and the *y*-intercept of the line with the equation 3y - 2x + 4 = 0.

3y - 2x + 4 = 0 $3y = 2x - 4$	1 Make <i>y</i> the subject of the equation.
$y = \frac{2}{3}x - \frac{4}{3}$	2 Divide all the terms by three to get the equation in the form $y =$
Gradient = $m = \frac{2}{3}$	3 In the form $y = mx + c$, the gradient is <i>m</i> and the <i>y</i> -intercept is <i>c</i> .
y-intercept = $c = -\frac{4}{3}$	

 (x_2, y_2)

y = mx + c

gradient $m = \frac{y_2 - y_1}{x_2 - x_1}$

x

m = 3 y = 3x + c	1 Substitute the gradient given in the question into the equation of a straight line $y = mx + c$.
$13 = 3 \times 5 + c$	 Substitute the coordinates x = 5 and y = 13 into the equation. Simplify and solve the equation.
$ \begin{array}{r} 13 = 15 + c \\ c = -2 \\ y = 3x - 2 \end{array} $	4 Substitute $c = -2$ into the equation
y 5x 2	y = 3x + c

Example 3 Find the equation of the line which passes through the point (5, 13) and has gradient 3.

Example 4 Find the equation of the line passing through the points with coordinates (2, 4) and (8, 7).

$x_1 = 2, x_2 = 8, y_1 = 4 \text{ and } y_2 = 7$	1 Substitute the coordinates into the
$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{7 - 4}{8 - 2} = \frac{3}{6} = \frac{1}{2}$	equation $m = \frac{y_2 - y_1}{x_2 - x_1}$ to work out
2 1	the gradient of the line.
1	2 Substitute the gradient into the
$y = \frac{1}{2}x + c$	equation of a straight line
2	y = mx + c.
$4 = \frac{1}{2} \times 2 + c$	3 Substitute the coordinates of either
2	point into the equation.
c = 3	4 Simplify and solve the equation.
$y = \frac{1}{2}x + 3$	5 Substitute $c = 3$ into the equation
	$y = \frac{1}{2}x + c$
	$y = 2^{x+c}$

Practice

1 Find the gradient and the *y*-intercept of the following equations.

a	y = 3x + 5	b	$y = -\frac{1}{2}x - 7$	
c	2y = 4x - 3	d	x + y = 5	Hint Rearrange the equations
e	2x - 3y - 7 = 0	f	5x + y - 4 = 0	Rearrange the equations to the form $y = mx + c$

2 Copy and complete the table, giving the equation of the line in the form y = mx + c.

Gradient	y-intercept	Equation of the line
5	0	
-3	2	
4	-7	

- 3 Find, in the form ax + by + c = 0 where a, b and c are integers, an equation for each of the lines with the following gradients and y-intercepts.
 - agradient $-\frac{1}{2}$, y-intercept -7bgradient 2, y-intercept 0cgradient $\frac{2}{3}$, y-intercept 4dgradient -1.2, y-intercept -2
- 4 Write an equation for the line which passes though the point (2, 5) and has gradient 4.
- 5 Write an equation for the line which passes through the point (6, 3) and has gradient $-\frac{2}{3}$
- 6 Write an equation for the line passing through each of the following pairs of points.

a	(4, 5), (10, 17)	b	(0, 6), (-4, 8)
c	(-1, -7), (5, 23)	d	(3, 10), (4, 7)

Extend

7 The equation of a line is 2y + 3x - 6 = 0. Write as much information as possible about this line.

Answers

1 a
$$m = 3, c = 5$$

b $m = -\frac{1}{2}, c = -7$
c $m = 2, c = -\frac{3}{2}$
d $m = -1, c = 5$
e $m = \frac{2}{3}, c = -\frac{7}{3}$ or $-2\frac{1}{3}$
f $m = -5, c = 4$

2

Gradient	y-intercept	Equation of the line
5	0	y = 5x
-3	2	y = -3x + 2
4	-7	y = 4x - 7

3 a x + 2y + 14 = 0 **b** 2x - y = 0

c 2x - 3y + 12 = 0 **d** 6x + 5y + 10 = 0

- 4 y = 4x 3
- 5 $y = -\frac{2}{3}x + 7$

6 a y = 2x - 3 **b** $y = -\frac{1}{2}x + 6$

c y = 5x - 2 **d** y = -3x + 19

7 $y = -\frac{3}{2}x + 3$, the gradient is $-\frac{3}{2}$ and the *y*-intercept is 3. The line intercepts the axes at (0, 3) and (2, 0).

Students may sketch the line or give coordinates that lie on the line such as $\left(1, \frac{3}{2}\right)$ or $\left(4, -3\right)$.

